Here are 9 AI Use Cases Happening in Business Today


Artificial intelligence (AI) is increasingly getting attention from enterprise decision makers. Given that, it’s no surprise that AI use cases are growing. According research conducted by Gartner, smart machines will achieve mainstream adoption by 2021, with 30 percent of large companies using AI.

These technologies, which can take the form of cognitive computing, machine learning and deep learning, are now tapping advanced capabilities such as image recognition, speech recognition, the use of smart agents, and predictive analytics to reinvent the way organizations do business. Combined with other digital technologies, including the Internet of Things (IoT), a new era of AI promises to transform business.

Here’s a look at 10 leading AI use cases and how organizations can use them to gain a competitive advantage:

Marketing: AI for Real Time Data 

The use of real-time data, Web data, historical purchase data, app use data, unstructured data and geolocation information have introduced the ability to deliver information, product recommendations, coupons and incentives at the right time and place. AI allows companies to engage in personalized marketing and slide the dial closer to one-to-one relationships.

In addition, businesses gain competitive advantage by using machine learning and deep learning for sentiment analysis by analyzing e-mail and social media streams. More advanced systems can detect a person’s mood from photos and videos. This helps systems respond contextually and create more targeted marketing and interactions.

Retail Sales: AI for Voice and Image Search

Artificial intelligence in retail is transforming the way people shop and buy items ranging from clothes to cars. Voice search and image search are now widespread. Amazon and many other retailers now incorporate these tools in their apps. Next generation AI is also taking shape. For example, augmented reality (AR) lets shoppers view a sofa or paint color superimposed in their house or office. Virtual reality (VR) allows consumers to sit inside a vehicle and even test drive it without leaving home. Audi, BMW and others have developed VR systems for shoppers.

But the AI use cases don’t stop there. AI in retail extends to bots and virtual assistants that recommend products and provide information; algorithms that helps sales teams focus on high value customers and high probability transactions; and predictive analytics that factor in weather, the price of raw goods and components, or inventory levels to adjust pricing and promotions dynamically. Clothing retailer North Face, for instance, asks customers a series of questions related to a purchase at its website. Not only does this lead customers to the right product, it taps machine learning to gain insights that potentially lead to higher cart values and additional sales.

Customer Support: AI for Natural Language

AI in retail is emerging as a powerful force, but customer support is also harnessing the technology for competitive advantage. Bots and digital assistants are transforming the way support functions take place. These technologies increasingly rely on natural language processing to identify problems and engage in automated conversations. AI algorithms determine how to direct the conversation or route the call to the right human agent, who has the required information on hand. This helps shorten calls and it produces higher customer satisfaction rates. A Forrester study found that 73 percent of customers said that valuing their time is the most important thing a company can do to provide them with good online customer service.

Manufacturing: AI Powers Smart Robots

Robotics has already changed the face of manufacturing. However, robots are becoming far more intelligent and autonomous, thanks to AI. What is machine learning used for in factories? Many companies are building so-called “smart manufacturing” facilities that use AI to optimize labor, speed production and improve product quality. Companies are also turning to predictive analytics to understand when a piece of equipment is likely to require maintenance, repair or replacement.

For example, Siemens is now equipping gas turbine systems with more than 500 sensors that continuously monitor devices and machines. All this data is helping create the manufacturing facility of the future, sometimes referred to as Industry 4.0. Smart manufacturing–which merges the industrial IoT and AI–is projected to grow from $200 billion in 2018 to $320 billion by 2020, according to a study conducted by market research firm TrendForce.

Read the source article in Datamation.